4 research outputs found

    Local ancestry inference provides insight into Tilapia breeding programmes

    Get PDF
    Tilapia is one of the most commercially valuable species in aquaculture with over 5 million tonnes of Nile tilapia, Oreochromis niloticus, produced worldwide every year. It has become increasingly important to keep track of the inheritance of the selected traits under continuous improvement (e.g. growth rate, size at maturity or genetic gender), as selective breeding has also resulted in genes that can hitchhike as part of the process. The goal of this study was to generate a Local Ancestry Interence workflow that harnessed existing tilapia genotyping-by-sequencing studies, such as Double Digest RAD-seq derived Single-Nucleotide Polymorphism markers. We developed a workflow and implemented a suite of tools to resolve the local ancestry of each chromosomal locus based on reference panels of tilapia species of known origin. We used tilapia species, wild populations and breeding programmes to validate our methods. The precision of the pipeline was evaluated on the basis of its ability to identify the genetic makeup of samples of known ancestry. The easy and inexpensive application of local ancestry inference in breeding programmes will facilitate the monitoring of the genetic profile of individuals of interest, the tracking of the movement of genes from parents to offspring and the detection of hybrids and their origin

    Species-Specific Marker Discovery in Tilapia

    Get PDF
    Tilapias (family Cichlidae) are of importance in aquaculture and fisheries. Hybridisation and introgression are common within tilapia genera but are difficult to analyse due to limited numbers of species-specific genetic markers. We tested the potential of double digested restriction-site associated DNA (ddRAD) sequencing for discovering single nucleotide polymorphism (SNP) markers to distinguish between 10 tilapia species. Analysis of ddRAD data revealed 1,371 shared SNPs in the de novo-based analysis and 1,204 SNPs in the reference-based analysis. Phylogenetic trees based on these two analyses were very similar. A total of 57 species-specific SNP markers were found among the samples analysed of the 10 tilapia species. Another set of 62 species-specific SNP markers was identified from a subset of four species which have often been involved in hybridisation in aquaculture: 13 for Oreochromis niloticus, 23 for O. aureus, 12 for O. mossambicus and 14 for O. u. hornorum. A panel of 24 SNPs was selected to distinguish among these four species and validated using 91 individuals. Larger numbers of SNP markers were found that could distinguish between the pairs of species within this subset. This technique offers potential for the investigation of hybridisation and introgression among tilapia species in aquaculture and in wild populations

    Harnessing genomics to fast-track genetic improvement in aquaculture

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAquaculture is the fastest-growing farmed food sector and will soon become the primary source of fish and shellfish for human diets. In contrast to crop and livestock production, aquaculture production is derived from numerous, exceptionally diverse species that are typically in the early stages of domestication. Genetic improvement of production traits via well-designed, managed breeding programmes has great potential to help meet the rising seafood demand driven by human population growth. Supported by continuous advances in sequencing and bioinformatics, genomics is increasingly being applied across the broad range of aquaculture species and at all stages of the domestication process to optimize selective breeding. In the future, combining genomic selection with biotechnological innovations, such as genome editing and surrogate broodstock technologies, may further expedite genetic improvement in aquaculture.Biotechnology & Biological Sciences Research Council (BBSRC
    corecore